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We thank the reviewers’ insightful comments and address the raised
issues below. We will revise our paper based on these comments.
[UPbE]C1-Experiment Issues. (Q5) (i) For synthetic datasets,
AP-10k is randomly & evenly split into two subsets, and the joints
division is in Fig A. The details are introduced in Lines 737-744.
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Fig A: Joints division 

For real dataset combination, we first merge mul-
tiple datasets and randomly select 10% as our la-
beled data. The random seed for all selection is 2.
(ii) Despite training with scarce incomplete anno-
tations, there is no risk of overfitting due to the
use of unlabeled data. The obtained results show
consistent improvement of ours on both datasets.
mAP/PCK@0.05 Model 1:Ls Model 2:Ls+Lu Ours

AP-10k 52.1/66.3 56.2/69.3 57.2/70.1
AnimalPose 57.3/65.5 61.7/69.6 62.4/69.6

(iii) We design a study to evaluate the effect of different dataset
combinations. We follow the setting in Table 4. The results show
that ours consistently outperforms SL by a large margin under var-
ious combination ratios, and a larger ratio leads to higher accuracy.
mAP/PCK@0.05 5% comb. ratio 10% comb. ratio 20% comb. ratio

SL 42.2/60.0 52.2/67.6 60.3/72.4
FreeNet(Ours) 48.6/65.3 57.26/71.36 63.4/75.4

C2-Enhance our framework. (Q4) We add details such as the
learning targets, math formulas, and the selection criteria in Fig B.
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Fig B: Detailed FreeNet framework

C3-ExplainL𝑢 ,L𝑠 ,L𝑓 . (Q2)
Eq1: L𝑢 is similar to the clas-
sic unsupervised loss, which
measures the difference be-
tween pseudo-GT and the
adaptation network’s predic-
tions for unlabeled data. The
key difference lies in using
joints 𝑘 in Û that meet the body part-aware sampling criteria
for loss calculation, denoted as

∑𝑁 𝐽

𝑘=1{Ĥ
k
u ∈ Û}1L𝑘

𝑢 . For enhanced
training stability, it is further scaled by the number of selected
joints. Eq2: L𝑠 is the supervised loss applies to the merging of𝑀
non-standard datasets. Eq3: L𝑓 measures the difference between
pseudo-GT and the base network’s predictions for unlabeled data,
multiplied by the feedback factor 𝑓 . First, the value of 𝑓 (Eq4) is
a dot product of two gradients terms, representing the cognitive
differences of the adaptation network on labeled and unlabeled data.
Second, pseudo joints 𝑘 in Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 are used for loss calculation,∑𝑁 𝐽

𝑘=1

{
Ĥk
u ∈ Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘

}
1
L𝑓

𝑘 , to better predict unannotated joints.
Third, the loss is also scaled to ensure training stability. (cf.Zt6j.C2)
C4-Clarification. (Q3)We specify pseudo-label for pose estimation
as pseudo-joints, denoted as �̂�𝑢 , where �̂�𝑘

𝑢 represents the 𝑘th joint.
Unlike GT labels, pseudo labels or joints change dynamically during
training. The way to obtain them is detailed in Lines 449-453.
C5-Improve fluency and logical clarity. (Q1) Thanks for your
suggestions. We will thoroughly proofread and polish our paper to
improve its presentation. To enhance logical clarity, we will clearly
define key terms such as “pseudo-joints”, update the framework
Figure 3(a) with Fig B, and better explain the math formulas.

[niDm]C1-Will different categories of keypoints cause a long-
tail effect? (Q1) Pose variations and occlusions obscure some key-
points, leading to an inherent long-tail distribution that is further

aggravated by the inclusion of unannotated joints. The long-tail
effect persists regardless of applying different categories of keypoints.

Tail KeypointsTail Keypoints

Fig C: Mitigating long-tail effect

Three experiment results show
that FreeNet effectively mitigates
this issue. First, it significantly im-
proves the accuracy of tail key-
points in Fig C. Second, it re-
duces the accuracy gap between
5/9 shared joints and unannotated
joints from 10.4/8.7 to 8.46/7.5
(see Table 3). Third, it improves
the std accuracy of three body parts by 0.6 (see Table 5).
C2-Gradient propagation for missing points. (Q2) Missing
points arise from two issues: regular occlusions and lack of stan-
dard annotation definitions across datasets. Unlike occluded points,
the second type of missing points are not completely unannotated;
instead, they are marked as 0 when unannotated. Only those anno-
tated points are forward-passed forL𝑠 , and then gradients are prop-
agated to update the base network. 0-valuedmissing points, akin
to occluded points, are excluded from loss calculation and
gradients update since their GT labels are not available. The ac-
curacy of unannotated missing points is further improved through
body part-aware learning and feedback learning in FreeNet.
C3-Clarification. (Q3) (i)Yes, the learned jointsmatch non-standard
labeled data properties (see Table 1). (ii) From top to bottom, these
three keypoints represent the wither, neck, and throat.
[Zt6j]C1-Detailedmethod steps. (Q1) Figure 3 (or Fig B) presents
the training process of FreeNet. In the inference, the adaptation
network is used for pose estimation. The detailed steps can be found
in Lines 341-385, and we will clearly revise it as suggested.
C2-About feedback learning. (Q2)(i) Its update process in T steps:
1) Sample a batch of 𝑥𝑙 and 𝑥𝑢 from given dataset 𝐷 , 2) Establish
Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 using the threshold 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 , 3) Calculate feedback
factor 𝑓 based on the difference between “new” and “old” adaptation
networks on 𝑥𝑙 and 𝑥𝑢 , respectively. 4) Use 𝑥𝑢 in Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 to
update the base network 𝜃B based on L𝑓 . (ii) The update is simple
to execute, as only the base network is updated directly. Although
the 𝑓 calculation involves the adaptation network in two steps, it
does not require gradients update. (iii) Sorry, we recognize that
“distillation” may be confusing as our two models are of the same
size. We believe “refinement” is more appropriate to show that the
predictions of unannotated joints are refined via feedback learning.
C3-Discuss more limitations. (Q3) When tackling unseen ex-
tremely diverse or rare species, FreeNet generally performs well in
predicting shared joints because these joints appear inmany species,
facilitating effective feature transfer. If there are many species with
exclusive joints available, FreeNet is likely to predict dense joints
for unseen species accurately. However, if only a few species have
such joints, especially when these species have little similarity to
the unseen ones, FreeNet may have difficulty generalizing to exclu-
sive joints. Dense joint prediction for unseen species is valuable
but more challenging than general animal pose estimation or dense
joint prediction for known species. We will add it to our revision.
C4-Other issues. Q4: We will clearly revise the Figure 6 as sug-
gested. Q5: According to Lines 721-724, all compared methods in
Table 2 have the same model complexity (28.5M Param) because
they all utilize HRNet-w32 as the backbone network.


