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Abstract — Since the release of Sora, the Text-to-Video (T2V) generation has brought profound changes to AI-generated content. T2V generation
aims to generate high-quality videos based on a given text description, which is challenging due to the lack of large-scale, high-quality text-video pairs
for training and the complexity of modeling high-dimensional video data. Although there have been some valuable and impressive surveys on T2V
generation, these surveys introduce approaches in a relatively isolated way, lack the development of evaluation metrics, and lack the latest advances
in T2V generation since 2023. Due to the rapid expansion of the field of T2V generation, a comprehensive review of the relevant studies is both
necessary and challenging. This survey attempts to connect and systematize existing research in a comprehensive way. Unlike previous surveys,
this survey paper reviews nearly ninety representative T2V generation approaches and includes the latest method published on March 2024 from the
perspectives of model, data, evaluation metrics, and available open-source. It may help readers better understand the current research status and
ideas and have a quick start with accessible open-source models. Finally, the future challenges and method trends of T2V generation are thoroughly
discussed.
Keywords — Survey, Text-to-Video Generation, Generative AI, Sora Model, AIGC.

I. Introduction

Artificial Intelligence Generated Content (AIGC) is develop-
ing rapidly and has become one of the most popular topics in
AI. The generative modalities of AIGC include image[1–3],
video[4–6], audio[7–9], and more. We counted the number of
papers published on different generated modalities in the past
five years (2019 to 2023) in Figure 1. As illustrated in Figure
1(a), text-to-image (T2I) generation research has dominated
the AIGC field for many years. Nevertheless, we can also see
from Figure 1(b) that the development of text-to-video (T2V)
generation has exploded in recent years, which may funda-
mentally shift the research emphasis in the future. We can
see that T2I generation started early and is the focus of re-
search. Although T2V generation started relatively late, the
right graph in Figure 1 shows that it has grown rapidly in
recent years.

T2V generation aims to generate high-quality videos
based on a given text description, and the videos generally
contain 16 frames with a duration of two seconds. It is chal-
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Figure 1 AIGC developments in the last five years, including Text-to-
Image, Text-to-Video and Text-to-Audio.

lenging for two reasons: First, there is a lack of large-scale,
high-quality text-video pairs for training; for example, tens of
millions of paired data are usually required. Second, the com-
plexity of modeling high-dimensional video data is high be-
cause 1) The semantic space for the text is much smaller than
the generation space for the video frame. 2) Correct retention
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of semantics and continuity between frames are required. 3)
The computation power is demanding, training a T2V model
like InternVid[10] typically requires 64 NVIDIA GPUs for
three days.

The release of Sora[11] this year has profoundly pushed
the frontier of the T2V generation. Prior to that, both
academia and industry put a great effort into improving T2V
generation models due to the wide application prospects. At
this point, a comprehensive review of the relevant studies is
both necessary and challenging. Although there have been
some valuable and impressive surveys on T2V generation,
these surveys introduce approaches in a relatively isolated
way, lack the development of evaluation metrics, and lack the
latest advances in T2V generation since 2023. Unlike previ-
ous surveys, this survey paper reviews nearly ninety repre-
sentative T2V generation approaches and includes the latest
method published on March 2024 from the perspectives of
model, data, evaluation metrics, and available open-source.

Our survey is illustrated in Figure 2, and the organization
is as follows: Section 2 clarifies the differences between this
survey and others. Section 3 explores existing methods and
reviews their strengths and weaknesses. Section 4 introduces
current T2V datasets, while Section 5 reviews the develop-
ment of metrics for evaluating T2V generation. Section 6
provides the results of the experiment on representative meth-
ods. Section 7 discusses challenges and future trends, and the
last section concludes this review.

II. Comparison with related survey work

Table 1 Compare our survey with existing surveys.

Survey #Methods
Latest

Pub. Year
#T2V

Datasets #Metrics

[12] 6 Oct.2022 NA NA
[13] 16 Dec.2022 15 5
[14] 28 Oct.2023 31 4
Ours 88 Mar.2024 40 20

Table 1 presents the differences between this survey and
the existing surveys. Unlike previous surveys, this survey pa-
per reviews nearly ninety representative T2V generation ap-
proaches and includes the latest method published in March
2024. Also, more T2V datasets and metrics are comprehen-
sively reviewed.

Singh[12] presents and compares popular T2I and T2V
generation methods, discussing their ideals, advantages, and
disadvantages. The survey offers an overview of T2V gen-
eration techniques but lacks a comprehensive exploration of
datasets and evaluation metrics.

Xing et al.[14] provide a detailed overview of T2V gen-
eration methods, including datasets and evaluation metrics.
However, this survey is somewhat outdated and focuses pri-
marily on diffusion model-based architectures. In contrast,
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Figure 2 The organization of our survey.

our survey covers all types of architectures for T2V gener-
ation except diffusion models.

Cho et al.[13] provides an excellent introduction for be-
ginners, covering T2V applications, technical limitations,
ethical conflicts, and future directions. However, their work
has limitations, including an insufficient introduction to
mainstream methods, insufficient comprehensive coverage of
datasets, especially the lack of introduction to newly pro-
posed datasets[10, 15], and lack of introduction to metrics
such as EvalCrafter[16] and FETV[17].

In contrast, our survey not only comprehensively intro-
duces related research, including core ideas, strengths, and
weaknesses, but also introduces T2V datasets and evaluation
metrics in detail. We cover 40 datasets and 20 metrics, over-
coming the limitations of existing surveys.

III. Text-to-Video Generation

1. Preliminaries
The primary generation procedure is illustrated in Figure 3.
First, a text encoder processes the input text to encoded fea-
tures. These features are then utilized to produce the corre-
sponding video by a generative model.

Text Encoder. Existing text encoders can be divided
into two categories: pre-trained multimodal models such as
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Figure 3 A brief diagram of text-to-video generation.

CLIP[18], and pre-trained large language models (LLMs)
such as BERT[19], T5[20], and Llama-2[21].

Pre-trained multimodal models, exemplified by
CLIP[18], learn their matching relationship by training
on large-scale text-image pairs, thereby aligning image
and text in an embedding space. However, CLIP cannot
handle text with complex meanings, which may limit its
effectiveness for long and complex text input.

Pre-trained LLMs excel in various tasks after being
trained on large-scale corpora. BERT[19] can learn from un-
labeled data and exhibit impressive performance, which can
be further improved as model size and training data expand.
T5[20] and Llama-2[21] are favored for their superior per-
formance and the availability of open-source. Usually, LLMs
outperform CLIP in understanding long text input.

Generation Model. Existing methods for generations
can be divided into four categories: 1) VAE-based[22] ap-
proaches, 2) GAN-based[23] approaches, 3) Autoregres-
sive transformer-based[4] approaches, 4) Diffusion model-
based[24] approaches, and 5) T2I methods for video gener-
ation methods. Figure 4 shows the timeline of representative
T2V generation methods in academia and industry. Figure 5
shows the categorization of existing methods for T2V gener-
ation.

2. VAE-based Approaches
The Variational Autoencoder (VAE)[22] is a groundbreak-
ing method for generating images. It consists of an encoder
and a decoder. The encoder maps the input data into a prob-
ability distribution, while the decoder generates new data
by sampling from the learned probability distribution. Sync-
DRAW[25] and GODIVA[26] are representative T2V gener-
ation methods based on VAE.

Sync-DRAW[25] combines a VAE with a recurrent atten-
tion mechanism for generating videos. It generates tempo-
rally coherent video frames by focusing on individual frames
through the attention mechanism, while using the VAE to
globally learn the latent distribution of the video. In addition,
it keeps full attention to the object through a gating mecha-
nism, which can generate videos that maintain the structural
integrity of the object.

The GODIVA model[26] is the first to use VQ-VAE[107]
for open-domain T2V generation, as illustrated in Figure 6. It

combines VQ-VAE and 3D sparse attention to generate video,
where 3D sparse attention can significantly reduce the com-
putational cost. First, a VQ-VAE autoencoder is trained to
represent continuous video pixels as discrete tokens. Then, a
3D sparse attention model is trained using language as input,
with the discrete video tokens used as labels for video gener-
ation.

3. GAN-based Approaches
Generative Adversarial Networks (GANs)[23] have been rul-
ing image generation for a decade. In contrast to VAE, the
core idea of GAN is to estimate the generator via an ad-
versarial process. GANs can usually produce images with
good perceptual quality and are widely used in T2V gen-
eration methods. However, the models based on GAN can
only generate videos with moving digits or simple human ac-
tions. They cannot further generate more complex and diverse
videos anymore. Moreover, GAN often suffers from pattern
collapse problems, and it is also difficult to scale these meth-
ods to complex and large-scale video datasets.

TGANs-c[27] is the first GAN-based work for T2V gen-
eration, proposing a temporal GAN where the generator takes
text embeddings and noise vectors to produce video frames. It
enhances the traditional 2D generator to a 3D model for bet-
ter spatiotemporal dynamics and incorporates motion analy-
sis in the discriminator to ensure coherent frame transitions,
as detailed in Figure 7. TFGAN[28] introduces a new text
conditioning method for discriminator feature maps through
convolutional operations, as depicted in Figure 8. Mean-
while, the authors also created the Moving Shapes Dataset,
where the text describes the shapes moving along a trajectory.
VGFT[29] proposed a hybrid generator that combines GAN
with VAE[22] to extract statistical and dynamic information
from text, thereby generating diverse and smooth videos that
correspond well to the input text.

Leverage the previous frame for generation. IRC-
GAN[30] proposes the introspective recurrent convolutional
GAN, consisting of the Recurrent Transconvolutional Gener-
ator ( RTG) and Mutual-information Introspection (MI). RTG
generates each frame based on the previous one to obtain bet-
ter coherence. MI uses mutual information to compute the se-
mantic distance between the T2V and the corresponding text
and tries to minimize the distance.

TiVGAN[31] proposes a new training framework that ini-
tially focuses on learning the relationship between text and
image to create high-quality single video frames. As training
progresses, the model is gradually trained on more successive
frames, which can stabilize the training and allow for clearer
video generation.

Story visualization. StoryGAN[32] proposes a new task
called “story visualization.” The input is a multi-sentence
paragraph, a story, and the output is a series of visualization
images, with one for each sentence. Compared to other T2V
works, this task can focus less on the continuity of the gen-
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Figure 4 A timeline of representative text-to-video generation methods in academia and industry.
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Figure 5 The categorization of existing methods for text-to-video generation.

erated image frames and more on the global consistency be-
tween dynamic scenes and characters.

Word-Level[33] expands on StoryGAN[32] by introduc-
ing a new sentence representation that combines word infor-
mation from all story sentences. Also, a new fusion feature
discriminator is proposed, extending spatial attention to im-
prove image quality and story consistency.

4. Auto-regressive Transformer Based Approaches
The autoregressive approach allows the model to generate se-
quences step-by-step, with the latest generated content being
based on the previously generated content, which naturally
fits with the idea of generating coherent videos. Compared
with GAN-based methods, the autoregressive transformer-
based can avoid pattern collapse problems and generate better

video quality. However, these methods require more compu-
tational and memory resources as the intermediate processes
need to be stored and are constantly involved in the computa-
tion.

NUWA[34] introduces a 3D transformer encoder and de-
coder framework that provides a unified representation space
for images and video, supporting both T2I and T2V genera-
tion. A 3D Nearby Attention (3DNA) mechanism is proposed
to reduce the computational complexity. The architecture is
shown in Figure 9.

VideoPoet[35] utilizes the unified architecture of LLMs
to perform unified autoregressive learning for text, video, im-
age, and audio modalities. Each modality has a separate to-
kenizer that converts the data into a discrete sequence of to-
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Figure 7 The architecture of TGANs-C[27].

kens. In addition, it incorporates a super-resolution module in
the token space to improve video quality.

Generate variable-length videos. Phenaki[36] is the first
model to generate videos of variable length. First, it trains
the transformer and randomly masks the video tokens during
training. While generating the video, an arbitrary length video
is generated by freezing the past tokens.

MMVID[37] is a video generation model that accepts
multimodal inputs. It consists of an auto-encoder for en-
coding images and videos and a non-autoregressive trans-
former for predicting video tokens from multimodal in-
puts, which can generate better temporally consistent videos,
such as special VID token, textual embedding, and im-
proved mask prediction. Moreover, it proposes a new dataset
called Multimodal VoxCeleb, where the video sources are
VoxCeleb’s[108] 19,522 videos, and each video has 36 man-
ually labeled facial attributes.

Current language models fall short of understanding the
world, which is not easily described in words, and need help
handling complex, long-form tasks. LWM[38] attempts to ad-
dress this problem. It proposes the RingAttention technique,
which extends the context window of the model so that it can
handle sequences up to one million tokens long. The context
length is gradually increased during the training process, and
the training data includes text-image pairs, text-video pairs,
and chat data for downstream tasks.

Some methods are not based on autoregressive transform-
ers, but their architectures are based on transformers, such
as MAGVIT[39] and WorldDreamer[40]. MAGVIT can han-
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Figure 8 The architecture of TFGAN[28].
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Figure 9 The architecture of Nuwa[34].

dle multiple video synthesis tasks simultaneously and signif-
icantly outperforms contemporaneous diffusion and autore-
gressive methods in inference speed. WorldDreamer is the
first generalized world model built for video generation. It
proposes the spatial temporal patchwise Transformer (SPT),
which performs attentional manipulation of local patches
within a spatio-temporal window. SPT facilitates the learning
of visual signal dynamics and accelerates the convergence of
the training process, leading to about three times faster than
diffusion-based methods.

5. Diffusion Model-based Approaches
Denoising diffusion probabilistic model[24] (DDPM) can
avoid the problem of pattern collapse in GANs and low gen-
eration quality in VAEs. At its core, a diffusion model adds
random noise to existing data and reverses the process to gen-
erate the high-quality image. Through this process, the model
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Figure 10 The architecture of Phenaki[36].

learns to create synthetic data.
Since the diffusion model manipulates images in pixels,

the computational consumption is particularly massive for
large images. Rombach R et al.[109] proposed an image gen-
eration model based on the Latent Diffusion Model, whose
core idea is to utilize an encoder an image to a latent vector
and a decoder to decode the latent vector into an image. The
advantage of such an approach is that the operation of the
diffusion model is performed in the latent space, whose di-
mension is much smaller than the original pixel space. Thus,
the computational consumption is significantly reduced.

The work introduced below is all based on either the dif-
fusion model or the potential diffusion model, and no specific
distinction is made in this survey.

VDM[6] is the first work to employ diffusion model for
video generation. It extends the traditional U-Net[110] archi-
tecture (2D) to 3D spatiotemporal and supports joint training
of images and videos at the same time. It further proposes
conditional sampling for spatio-temporal video, which is ca-
pable of generating long and high-resolution videos. With the
introduction of the 3D U-Net architecture, there has been an
increase in the use of diffusion modeling for video genera-
tion.

Temporal modeling exploration. LVDM[41] is one of
the representative works of the latent diffusion model in video
generation. It innovatively proposes hierarchical diffusion in
the latent space. The framework is shown in Figure 11, where
t and s are randomly sampled diffusion timesteps for gener-
ated latents and conditional latents, respectively. pc and pu
are probabilities of the conditional and unconditional input,
respectively. After that, to overcome the performance degra-
dation problem caused by long video generation, LVDM[41]
proposes conditional latent perturbation and unconditional

guidance, which effectively mitigates the cumulative error
while extending to have more than one thousand frames.

Video 
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Figure 11 The architecture of LVDM[41].

Arguing that the oversimplification of other works for
temporal modeling limits the spatiotemporal performance,
VersVideo[42] proposes multi-excitation paths for spatiotem-
poral convolution across a pool of dimensions with different
axes and multi-expert spatiotemporal attention blocks, which
improves the spatiotemporal performance of the model with-
out significantly increased training and inference costs. It also
integrates the temporal module into the decoder to solve the
problem of information loss due to the latent space.

Multi-stage T2V methods. Show-1[43]innovatively
combines the respective advantages of pixel-based and latent-
based video diffusion models. Pixel-based video diffusion
models perform well but have high computational costs.
While the latent-based model effectively reduces the compu-
tational effort, it is not easy to accurately align text and video.
Show-1 first generates a low-resolution video using the pixel-
based diffusion model to accurately align the text and video.
Then, the latent video diffusion model is used to upsample the
low-resolution video to high-resolution video. Its framework
is shown in Figure 12.

LaVie[44] consists of three modules: a basic T2V
model, a temporal interpolation (TI) model, and a video
super-resolution (VSR) model. The basic model generates
keyframes, the TI model generates smoother results, and the
VSR model further improves resolution. MoVideo[45] gen-
erates the video in two steps, first generating the depth and
optical flow of the video and then generating the final video
by combining the keyframes generated by the T2I model un-
der these two conditions. Mora[46] utilizes a variety of ad-
vanced large models for T2V generation that can replicate
Sora’s[11] generative capabilities. Specifically, video gener-
ation is decomposed into several subtasks, each assigned to
a specialized large-scale model. VideoElevator[47] uses en-
capsulated T2V models to improve temporal consistency and
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Figure 12 The architecture of Show-1[43].

T2I models to provide high-quality detail.
Multi-stage methods improve the quality of generated

videos better than single-stage methods. However, the draw-
backs are the complexity of the generation process and the
increased burden of training.

Noise prior exploration. VideoFusion[48] decomposes
the standard diffusion process into adding basic and resid-
ual noise, where consecutive frames share the basic noise.
This way, frames in the same video clip are encoded as re-
lated noises, allowing the denoising network to reconstruct
coherent video more easily. InstructVideo[49] combines hu-
man preferences with text into noise. POS[50] proposes opti-
mal noise approximators and semantic-preserving rewriters.
The optimal noise approximator first searches for the video
closely related to the text and then inverts it into the noise
space as an improved noise for the text input. The semantic
preservation rewriter rewrites the original text while preserv-
ing the semantics.

The generated video is denoised from noise, which can
directly affect the video quality. Improving the initial noise
without changing other modules can further improve the
model’s performance.

Datasets contribution. VidRD[51] proposes a set of
strategies for combining video-text data that involves dif-
ferent elements of several existing datasets, including video
datasets for action recognition and image-text datasets.
VideoFactory[15] collected videos on YouTube and labeled
them using BLIP-2, building a large video dataset called
HD-VG-130M. InternVid[10] proposes a method for au-
tonomously building high-quality video text datasets using
LLMs and publicly releasing the collected datasets.

High-quality T2V datasets are essential for improving
model performance. Compared to other generative tasks,
the available datasets in T2V generation are currently quite
scarce, which limits the model performance to some extent.

Efficient training. F3-Pruning[52] proposes a training-
free generalized pruning strategy to prune redundant spa-
tiotemporal attention weights. This speeds up the inference of
the T2V model and ensures video quality. VideoLCM[53] ap-
plies consistency models (CM)[111] to the video generation
domain. It achieves high-fidelity and smooth video synthesis
using only four sampling steps, demonstrating the potential
of real-time synthesis. ART-V[54] learns only simple con-

tinuous motions between neighboring frames and generates
videos autoregressively, thus reducing the enormous compu-
tational overhead of training. AdaDiff[55] arranges denois-
ing steps according to different samples. It uses the gradient
method for optimization to maximize a well-designed reward
function. It reduces the inference time by at least one-third
while achieving similar results to other methods.

Incorporating transformers into diffusion models.
VDT[56] is the pioneer in using transformers in diffusion-
based video generation. Utilizing transformer in diffusion
models can leverage its rich spatiotemporal representations
well. Similar to VDT, Latte[57] is also a transformer-based
diffusion model that achieves a performance beyond that of
the VDT. W.A.L.T[58] devised a transformer framework that
transforms the latent vectors of images and videos in the
same latent space. The transformer framework is a window
attention architecture consisting of self-attention layers that
alternate between non-overlapping, window-constrained spa-
tial and spatio-temporal attention. Snap Video[59] replaces
U-Nets in the traditional diffusion model with a transformer-
based FITs[112] structure. Further, it extends the number of
parameters, significantly improving temporal consistency and
motion modeling.

Sora[11] is the first large-scale general-purpose video
generation model that has attracted widespread attention in
the community. It is based on a DiT[113] structure simi-
lar to Latte. It has several features. The first is the ability
to train based on videos and images with different resolu-
tions, durations, and aspect ratios and trained on the origi-
nal image size. Secondly, it will convert short user prompts
into longer detailed instructions using GPT[114] to improve
video quality. Thirdly, it supports generation from images and
videos, including image-to-video generation, extended gener-
ated video, video editing, etc.

Multiple data training. Considering the limited scale of
publicly available text-video pairs, TF-T2V[60] proposes a
new T2V generation framework that allows direct learning
using text-free videos. The basic principle is to separate the
process of text decoding from the process of temporal mod-
eling. For this purpose, it employs a content and a motion
branch, jointly optimized with shared weights. In the con-
tent branch, paired image-text data is leveraged to learn text-
conditioned and image-conditioned spatial appearance gen-
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eration. The motion branch supports the training of motion
dynamic synthesis by feeding text-free videos (or partially
paired video-text data if available).

Personalized video generation. Animate Anyone[61]
proposes a new framework customized for character anima-
tion, capable of converting character photos into animated
videos controlled by a required sequence of poses while en-
suring a consistent appearance and temporal stability. GEN-
1[62] proposes a structure- and content-oriented video dif-
fusion model that can modify existing videos based on text.
DynamiCrafter[63] animates open-domain images using a
pre-trained video diffusion prior, a proposed dual-stream im-
age injection mechanism, and a dedicated training paradigm.

Spatio-temporal decoupling. HiGen[64] improves per-
formance by decoupling the spatial and temporal elements
of video from both structure and content perspectives. At the
structural level, it uses a unified noise reducer to decompose
the T2V task into two steps: spatial inference and temporal
inference. At the content level, it extracts motion and appear-
ance changes from the content of the input video, respec-
tively. LAMP[65] proposes a new setting for the T2V gen-
eration task to balance the generation freedom with the train-
ing cost. It learns the motion patterns only from a training set
consisting of 8 to 16 videos and later generates subsequent
frames using the images generated by the T2I model as the
first frame. MotionDirector[66] utilizes a dual-path LoRAs
architecture to decouple the learning of appearance and mo-
tion and designs a new appearance debiasing temporal loss
to mitigate the effect of appearance on the temporal training
objective.

Controllable T2V generation. PEEKABOO[67] expects
users to control video generation interactively. It proposes
a new spatial-temporal masked attention module to achieve
spatiotemporal control without the extra overhead of train-
ing and inference for current video generation models.
ControlVideo[68] is adapted from ControlNet[115] and intro-
duces three new modules to improve video generation. First,
full cross-frame interaction is added to the self-attention mod-
ule. Second, it uses frame interpolation to mitigate flicker ef-
fects. Finally, it synthesizes multiple consistent short clips.
VideoComposer[69] offers a variety of methods for control-
lable video generation at once. It can simultaneously control
spatial and temporal patterns in composited video through
textual descriptions, sketch sequences, reference videos, and
even simple manual movements. StyleCrafter[70] augments
the pre-trained T2V model with a style control adapter, which
can generate videos in any style by providing reference im-
ages. It uses a style-rich image dataset to train the style
control adapter. MobileVidFactory[71] is a system that uses
text input to generate videos for mobile devices automati-
cally. The system first generates high-quality videos using a
video generator. Then, the user can enrich the visual presen-
tation by adding specified text. Finally, it matches the gener-

ated video with the appropriate audio in an audio database.
Boximator[72] is a method for fine-grained video motion
control that provides two types of boxes, allowing the user
to select any object and define its motion without entering
additional text. It trains only the control module, which re-
tains knowledge of the underlying model, so its performance
improves as the underlying model evolves.

Remove flicker and artifacts. Flickering and artifacts in
the generated video are due to the current model’s lack of
learning and generative capabilities. Removing the flicker-
ing and artifacts can make the generated video more realis-
tic. DiffSynth[73] proposes a latent in-iteration deflickering
framework and a video deflickering algorithm to mitigate the
flickering. The latent in-iteration deflickering framework ap-
plies the video deflickering algorithm to the latent space of
the diffusion model, effectively preventing the accumulation
of flicker in intermediate steps. The video deflickering algo-
rithm remaps objects in different frames and blends them to
enhance video consistency. Like DiffSynth[73], DSDN[74]
also reduces flicker and artifacts in the generated video. It de-
signs two diffusion streams, one for the video content and one
for the motion variations, in such a way that the content and
the motion can be better aligned. Experiments show that this
decomposition also reduces the generation of flicker.

Complex dynamics modeling. Dysen-VDM[75] pro-
poses a dynamic scene manager module to enhance the dy-
namics of generated videos. The module consists of 1) ex-
tracting key actions from the input text in chronological order,
2) converting the action schedule into a dynamic scene graph
representation, and 3) enriching the scenes in the DSG with
sufficiently reasonable details. VideoDirGPT[76] inputs the
text prompts into GPT-4[114] to output a video plan, which
includes generating scene descriptions, entities with their re-
spective layouts, backgrounds for each scene, and consistent
grouping of entities and backgrounds. Finally, the video gen-
erator generates the video based on the video plan. LVD[77]
utilizes LLMs to generate dynamic scene layouts based on
the prompt and then uses the generated layouts to guide the
diffusion model to generate video. Such a process does not
involve any updates to the parameters of the LLM and the
diffusion model.

All three methods leverage the comprehension capabili-
ties of large language models to guide generative models to
better generation.

Domain-specific T2V generation. Text2Performer[78]
focuses on the generation of human videos. It has two
novel designs: decomposed human representations and a
diffusion-based motion sampler. Video Adapter[79] decom-
poses domain-specific video distributions into pre-trained
priors and trainable components, which significantly re-
duces the cost of tuning large pre-trained video models.
DrivingDiffusion[80] generates realistic multi-view driving
videos from prompts and 3D layouts.
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Generating longer videos. NUWA-XL[81] is a follow-
up work of NUWA[34] generating long videos from text. It
employs a coarse-to-fine generation paradigm. A global dif-
fusion model generates keyframes over the entire period, and
then a local diffusion model recursively fills in the content
between nearby frames. SEINE[82] proposes a short-to-long
(S2L) video diffusion model. It generates transitions based on
textual descriptions automatically. Transition videos are gen-
erated by providing images of different scenes as inputs, com-
bined with text-based control. MTVG[83] proposes multi-
T2V generation that directly utilizes a pre-trained diffusion-
based T2V generation model without additional fine-tuning.
Similarly, FreeNoise[84], like MTVG[83], studies the gener-
ation of long videos conditioned on multiple texts. Instead of
initializing noise for all frames, FreeNoise rearranges a se-
ries of noises for long-range correlation and provides tem-
poral attention to them through window-based fusion. Gen-
L-Video[85] extends existing short video diffusion models
to generate long videos based on hundreds of clips with
different semantics without introducing additional training
while maintaining content consistency. StreamingT2V[86]
proposes an autoregressive approach that utilizes novel short-
term and long-term dependency blocks to seamlessly carry
over video chunks with high motion while preserving high-
level scene and object features during the generation process.
Vlogger[87] is a system that generates vlogs longer than 5
minutes from text. It utilizes the LLM as a director and breaks
down the generation of vlogs into four phases: Script, Actor,
showmaker, and Voicer.

6. T2I for Video Generation Approaches
Training a T2V model from scratch requires tremendous
computational cost. Thus, many works focus on how pre-
trained T2I models can be utilized to contribute to video gen-
eration. The T2I-based model reduces the training cost and
ensures the image quality of the generated video.

CogVideo[4] generates several key frames using a T2I
model called CogView2[3]. Based on the keyframes, several
rounds of frame interpolation are performed to form a final
video. The process of frame interpolation is an autoregressive
process. It also proposes multi-frame rate hierarchical train-
ing to align text-video pairs better. The framework is shown
in Figure 13.

ModelScopeT2V[88] is the first open-source diffusion-
based T2V generation model. Spatio-temporal blocks are
added to a T2I synthesis model to ensure consistent frame
generation and smooth motion transitions.

Make-A-Video[5] incorporates a super-resolution module
based on frame interpolation to improve video quality. There
is no need for text-video pairs for its training, and only video
data is needed to learn the motion.

Imagen Video[89] utilizes the mature T2I model
Imagen[116] to generate the base video. Six diffusion models
are then cascaded, three for spatial super-resolution and three

A child excitedly swings on 

a rusty swing set, laughter 

filling the air.

V
Q

V
A

E

Discretize

Transformer (Stage 1: Sequential Generation)

Transformer (Stage 2: Recursive Interpolation)

Interpolate frames

Sequence 1 Sequence 2

Frame Rate Text [B] Frame-1 Frame-2 Frame-3 Frame-4 Frame-5

Frame Rate Text [B] Frame-1 Frame-2 Frame-3 Frame-4 Frame-5

Text tokenization Flatten

Figure 13 The architecture of CogVideo[4].

for temporal super-resolution. Each model is trained indepen-
dently, and the cascade maximizes the performance benefits.
The framework is shown in Figure 14.

Input 

Text

Text 

Encoder
Base

SSRSSR TSR

TSR TSR SSR

A child excitedly swings 

on a rusty swing set, 

laughter filling the air.

Figure 14 The architecture of Imagen[89].

Unlike generating keyframes and then interpolating them,
Lumiere’s[90] proposed STUNet can directly generate all the
frames in one step and then use spatial super-resolution on
some overlapping windows to get higher-resolution video.

Video LDM[91] first pre-trains the image generator on
images. It then introduces a temporal layer and fine-tunes the
encoded image sequence to convert the image generator into
a video generator.

While previous approaches usually added a 1D temporal
layer to model the time, MagicVideo[92] considered it un-
necessary to use such a complex operation and proposed the
concept of the frame adapter, which uses only two sets of pa-
rameters to model the relationship between the images and
the video.

Similar to MagicVideo[92], SimDA[93] employs
adapters to transform T2I models into T2V models. It not
only includes a lightweight spatial adapter to transfer visual
information for T2V learning but also introduces a temporal
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adapter to model temporal relationships for lower feature
dimensions.

MagicVideo-V2[94] integrates a T2I model, a video mo-
tion generator, a reference image embedding module, and a
frame interpolation module into an end-to-end video genera-
tion pipeline.

SVD[95] proposes a three-step paradigm for training
video generation models: T2I pre-training, video pre-training,
and high-quality video fine-tuning. In addition, it provides a
series of processes to generate high-quality T2V datasets.

VideoGen[96] utilizes the T2I model to generate a refer-
ence image based on the prompt. Then, an efficient cascading
latent diffusion model is introduced, which conditions the ref-
erence image and prompt for generating the latent represen-
tation of the video.

PYoCo[97] proposes a video diffusion noise for fine-
tuning T2I models into T2V models. It fine-tunes the eDiff-
I[117] to construct a large-scale T2V diffusion model.

Text2Video-Zero[98] utilizes a pre-trained T2I model to
generate the latent space representation of the image. After
that, the latent space representation of each frame is generated
using the dynamics method and the cross-attention mecha-
nism that only pays attention to the first frame. Finally, the
video is generated by the decoder.

Tune-A-Video[99] proposes a new task of training a T2V
model using only a single text-video pair and a pre-trained
T2I model.

Latent-Shift[100] proposes a parameter-free temporal
shift module that can generate videos based on the T2I model.
The module accomplishes this by shifting both parts of the
feature mapping channel forward and backward along the
time dimension.

VideoCrafter2[101] separates appearance and motion by
utilizing low-quality videos for motion learning and high-
quality images for appearance learning. It also suggests us-
ing synthetic images with complex concepts instead of real
images for fine-tuning.

GridDiffusion[102] generates videos using the grid diffu-
sion model. It first generates key grid images, including four
images inside a grid image. After that, masked grid images
are inserted into the grid, allowing the interpolation model to
generate the masked images autoregressively.

DirecT2V[103] and Free-Bloom[104] use language mod-
els to transform user prompts into detailed frame descrip-
tions, then employ a T2I model to generate each frame.
DirecT2V enhances frame consistency using novel value
mapping and dual softmax filtering, while FreeBloom pro-
poses joint noise sampling and dual path interpolation.
FlowZero[105] utilizes LLM to generate a comprehensive
dynamic scene syntax (DSS) containing scene descriptions,
object layouts, and background motion patterns. The DSS
then guides the image diffusion model in generating videos.
In particular, it proposes a self-refining iterative process

that enhances the alignment of the video with the text.
GPT4Motion[106] utilizes GPT-4[114] to generate Blender
scripts based on user prompts, producing coherent physical
motion across frames. Blender* is an open-source 3D creation
suite that provides modeling, animation, and rendering tools
that facilitate the creation of detailed 3D scenes.

7. Open-source Organization for T2V Methods
Compared to other research fields, T2V requires a lot of com-
putational and data resources, and the models are usually re-
leased by industry. For commercial reasons, many models and
training details are not open source. We summarize the ex-
isting open-source methods in Table 2 to help researchers
quickly get started with the experiments.

IV. Datasets
The dataset for the T2V task can be categorized into
two classes based on the text[14]. The first is caption-
level datasets, where the text corresponding to the video is
more detailed in description, and the other is category-level
datasets, where the text corresponding to the video is a cate-
gory of the video.

1. Caption-level Datasets
We list the current common caption-level datasets in the T2V
task in Table 3. From the table, we can observe that the
early datasets annotated with text are manually annotated
(Manual), and the videos are small in size and single do-
main (e.g., movie, action, cooking), as well as low resolution
(e.g., 240P). With the release of WebVid-10M[122], the T2V
dataset has ushered in an era of rapid development, and it has
become the most dominant dataset in the T2V task. However,
the resolution of WebVid-10M[122] is too low, and a water-
mark exists, leading to poor video quality. Therefore, subse-
quent datasets have increased the video resolution and added
algorithms to filter inappropriate videos (e.g., the presence of
watermarks or subtitles).

In addition to gradually improving the quality of the
videos in the dataset, the newly released datasets also pay
more attention to the alignment between text and video. Im-
proving the alignment between text and video improves the
generation performance of the model, which has been demon-
strated in recent work[10, 95].

Manual annotation can provide high-quality text, but if
the number of videos rises, the burden of manual labor will
be unbearable. HowTo100M[123] and other datasets col-
lect videos originating from YouTube, and they use the au-
tomatic speech recognition (ASR) technique provided by
YouTube to generate the texts, but the semantic relevance
is low. WebVid10M[122] uses Alt-text, and WTS70M[124]
uses Metadata (which contains titles, descriptions, tags,
and channel names). VideoCC3M[125] transfers the text-
image dataset to the text-video dataset. It uses Conceptual

∗https://www.blender.org/
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Table 2 Open source T2V methods collation.
Method Venue Frames Resolution Code Official Release

Follow Your Pose[118] AAAI24 8 512× 512 https://github.com/mayuelala/FollowYourPose ✓
ConditionVideo[119] AAAI24 24 512× 512 https://github.com/pengbo807/ConditionVideo ✓

Make-A-Video[5] Arxiv22 16 256× 256 https://github.com/lucidrains/make-a-video-pytorch ×
LVDM[41] Arxiv22 16 256× 256 https://github.com/YingqingHe/LVDM ✓

DirecT2V[103] Arxiv23 16 512× 512 https://github.com/KU-CVLAB/DirecT2V ✓
LaVie[44] Arxiv23 61 1280x2048 https://github.com/Vchitect/LaVie ✓

ModelScope[88] Arxiv23 16 256× 256 https://modelscope.cn/models/iic/text-to-video-synthesis/summary ✓
VidRD[51] Arxiv23 16 256× 256 https://github.com/anonymous0x233/ReuseAndDiffuse ✓

VideoDirectorGPT[76] Arxiv23 16 256× 256 https://github.com/HL-hanlin/VideoDirectorGPT ✓
Show-1[43] Arxiv23 29 320× 576 https://github.com/showlab/Show-1 ✓

VideoFusion[48] Arxiv23 33 256× 256 https://github.com/ai-forever/KandinskyVideo ✓
HiGen[64] Arxiv23 32 448× 256 https://github.com/ali-vilab/VGen ✓

Animate Anyone[61] Arxiv23 24 768× 768 https://github.com/HumanAIGC/AnimateAnyone ✓
StyleCrafter[70] Arxiv23 16 320× 512 https://github.com/GongyeLiu/StyleCrafter ✓

DynamiCrafter[63] Arxiv23 16 576× 1024 https://github.com/Doubiiu/DynamiCrafter ✓
MotionDirector[66] Arxiv23 16 384× 384 https://github.com/showlab/MotionDirector ✓

FlowZero[105] Arxiv23 8 512× 512 https://github.com/aniki-ly/FlowZero ✓
Latte[57] Arxiv24 16 256× 256 https://github.com/Vchitect/Latte ✓

VideoCrafter2[101] Arxiv24 16 320× 512 https://github.com/AILab-CVC/VideoCrafter ✓
MMVID[37] CVPR22 8 128× 128 https://github.com/snap-research/MMVID ✓
MAGVIT[39] CVPR23 16 128× 128 https://github.com/google-research/magvit ✓

Text2Performer[78] CVPR23 20 512× 256 https://github.com/yumingj/Text2Performer ✓
Dysen-VDM[75] CVPR24 16 256× 256 https://github.com/scofield7419/Dysen ✓

BIVDiff[120] CVPR24 8 512× 512 https://github.com/MCG-NJU/BIVDiff ✓
LAMP[65] CVPR24 16 320× 512 https://github.com/RQ-Wu/LAMP ✓

Tune-A-Video[99] ICCV23 32 512× 512 https://github.com/showlab/Tune-A-Video ✓
Text2Video-Zero[98] ICCV23 8 512× 512 https://github.com/Picsart-AI-Research/Text2Video-Zero ✓

CogVideo[4] ICLR23 16 480× 480 https://github.com/THUDM/CogVideo ✓
LVD[77] ICLR24 16 512× 512 https://github.com/TonyLianLong/LLM-groundedVideoDiffusion ✓

AnimateDiff[121] ICLR24 16 256× 256 https://github.com/guoyww/AnimateDiff ✓
FreeNoise[84] ICLR24 64 1024× 576 https://github.com/AILab-CVC/FreeNoise ✓

VDM[6] NeurIPS22 16 64× 64 https://github.com/lucidrains/video-diffusion-pytorch ×
Free-Bloom[104] NeurIPS23 6 512× 512 https://github.com/SooLab/Free-Bloom ✓

Captions3M[126] as the original dataset. It starts with the text
image dataset and, for each text image pair in the dataset,
finds frames in the video that are similar to the image and
then extracts short video clips around the matching frames
and corresponds the text to those clips.

The latest datasets all use different generative methods
to get the texts, which saves labor and also ensures that the
quality of the texts is high.

HD-VG-130M[15] first cuts the video using PySceneDe-
tect†. After cutting, the content of each video contains only
one scene. After that, select the middle frame of the video
and use BLIP2[127] to generate a textual description. This
description will be used to describe the video. InternVid[10]
has two scales to generate text, coarse and fine, where
the coarse scale is generated in the same way as HD-VG-
130M[15]. At the fine scale, Tag2Text[128] is used to gen-
erate text descriptions for each frame of the video. These
text descriptions are then synthesized into a comprehen-
sive description using a pre-trained language model. CelebV-
Text[39] utilizes a semi-automatic template-based text gen-
eration strategy. An algorithm automatically labels attributes

†https://www.scenedetect.com/

that are easy to label, and attributes that are difficult to
label are labeled manually. Afterward, following the tem-
plate, the attributes are filled in to get the final descrip-
tion of the video. Vimeo25M[44] uses Videochat[129] to
generate text automatically. Panda-70M[130] utilizes multi-
ple models (including VideoLLaMA[131], VideoChat[129],
VideoChat[129] Text, BLIP-2[127], and MiniGPT-4[132]) to
generate texts. After that, it fine-tunes Unmasked Teacher
(UMT)[133] to help select the best one of the texts. In or-
der to minimize the computational requirements, it proposes
a student model to extract knowledge from the teacher model.
VidProM[134] collected 1.67 million T2V prompts from real
users. Based on the prompts, 6.69 million videos were gener-
ated by Pika‡, Text2Video-Zero[98], VideoCraft2[101], and
ModelScope[88]. MiraData§ uniformly sampled eight frames
for each video and arranged them into a large 2x4 grid im-
age. Then, a one-sentence caption is generated for each video
using Panda-70M’s[130] caption model. After that, the gen-
erated captions are fed into GPT-4V[135] as auxiliaries along
with the large 2x4 image to output multi-dimensional cap-

‡https://pika.art/home
§https://mira-space.github.io/
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tions in one dialog round efficiently.
As shown in Figure 15, we give examples of text-video

pairs from MSVD, MSR-VTT, WebVid10M, and Panda70M
to illustrate the development of the T2V dataset. We show
four frames from the selected video uniformly over time. If
there are multiple text annotations, we select two sentences
from them for the demonstration. For comparison, we resize
the videos to the same size. Both MSVD and MSR-VTT
have multiple text annotations for the same video. MSVD
may even have incorrect text annotations. The video from
MSR-VTT contains multiple scenes, and the others are sin-
gle scenes. From WebVid10M to Panda70M, we can see more
precise text annotation.

a squirrel is eating a peanut in it s shell; a rabbit is eating;

A car is shown; A man drives a vehicle through the countryside;

It is a rally car driving on a dirt road in the countryside, with people 

watching from the side of the road.

Happy family using laptop on bed at home

Frame 0 Frame 30 Frame 60 Frame 90

MSVD

MSR-VTT

WebVid10M

Panda70M

Figure 15 Showcase of different datasets.

2. Category-level Datasets
Without a suitable caption-level dataset, the T2V task uses
category-level datasets to train the model. These category-
level datasets are from other tasks, e.g., UCF101[150],
Kinetics[151], and Something-Something[152] from the ac-
tion recognition task. DAVIS[153] from the video editing
task. We list the category-level datasets ever used for the T2V
task in Table 4.

V. Evaluation Metrics
Quantitative metrics consist of the visual quality of T2V and
the alignment of text and video. To better evaluate the perfor-
mance of T2V models, EvalCrafter[16] further improves the
metrics on visual quality and text-video alignment and pro-

Table 3 The comparison of main caption-level video datasets.
Dataset Text Domain Clips Res.

MSVD / 2011[136] Manual Open 2K -
MSR-VTT / 2016[137] Manual Open 10K 240P

DideMo / 2017[138] Manual Flickr 27K -
LSMDC / 2017[139] Manual Movie 118K 1080P

ActivityNet / 2017[140] Manual Action 100K -
YouCook2 / 2018[141] Manual Cooking 14K -

How2 / 2018[142] Manual Instruct 80K -
VATEX / 2019[143] Manual Action 41K 240P

HowTo100M / 2019[123] ASR Instruct 136M 240P
WTS70M / 2020[124] Metadata Action 70M -

YT-Temporal / 2021[144] ASR Open 180M -
WebVid10M / 2021[122] Alt-text Open 10.7M 360P

Echo-Dynamic / 2021[145] Manual ECG 10K -
Tiktok / 2021[146] Mannual Action 0.3K -

HD-VILA / 2022[147] ASR Open 103M 720P
VideoCC3M / 2022[125] Transfer Open 10.3M -
HD-VG-130M / 2023[15] Generated Open 130M 720P

InternVid / 2023[10] Generated Open 234M 720P
CelebV-Text / 2023[148] Generated Face 70K 480P
Vimeo25M / 2023[44] Generated Open 25M -

Panda-70M / 2024[130] Generated Open 70M 720P
VidProM / 2024[134] Collected Open 6M -
MiraData / 2024[149] Generated Game 57K -

poses metrics on motion quality and temporal consistency.
These will be introduced in the following four subsections.
For qualitative metrics, which are subjective human evalua-
tions, they will be introduced in Section 5.3.

1. Video Quality Assessment
The traditional metrics to measure the visual quality of video
are FVD[167] and IS[168], developed from image visual met-
rics.

Fréchet Video Distance (FVD)[167] builds on the prin-
ciple of FID[169]. It measures the visual quality of the gener-
ated video by calculating the distance between the generated
video’s distribution and the real video’s distribution. The cal-

Table 4 The comparison of main Category-level video datasets.
Datasets Categories Clips Res.

KTH / 2004[154] 6 2K 160× 120

MUG / 2010[155] 6 1K 896× 896

UCF-101 / 2012[150] 101 13K 256× 256

Cityscapes / 2015[156] 30 3K 256× 256

Moving MNIST / 2016[157] 10 10K 64× 64

Kinetics-400 / 2017[158] 400 260K 256× 256

BAIR / 2017[159] 2 45K 64× 64

DAVIS / 2017[153] - 90 1280× 720

Sky Time-Lapse / 2018[160] 1 38K 256× 256

Ssthv2 / 2018[152] 174 220K 256× 256

Kinetics-600 / 2018[161] 600 495K 256× 256

MiT / 2018[162] 339 1M 340× 256

Tai-Chi-HD / 2019[163] 1 3K 256× 256

iPER / 2019[164] 10 206 256× 256

Bridge Data / 2021[165] 10 7K 256× 256

Mountain Bike / 2022[166] 1 1K 576× 1024

RDS / 2023[91] 2 683K 512× 1024
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culation formula is shown in Eq. 1,

d (PR, PG) = |µR − µG|2 +Tr
(
ΣR +ΣG − 2 (ΣRΣG)

1
2

)
(1)

where µR and µG are the means, and
∑

R and
∑

G

are the co-variance matrices of PR and PG, respectively.
FVD[167] adopts inflated 3D Convnets[158] (I3D) pretrained
on Kinetics[151] to extract features from videos.

Inception Score (IS)[168] uses the Inception
Network[170], pre-trained on the ImageNet[171] dataset
as the feature extraction to evaluate the image quality.
When evaluating video quality, the feature extraction model
is changed to 3D-Convnets (C3D)[172]. The calculation
formula is shown in Eq. 2,

IS = expEx∼pG
KL(p(y | x)∥p(y)) (2)

where P (y) is the marginal distribution of all videos and
P (y|x) denotes the output distribution of the model after in-
putting the generated videos. IS measures the diversity of the
generated videos, with larger scores indicating more variety
in the generated content.

A recent study, EvalCrafter[16], utilizes Dover[173] to
assess the visual quality of generated videos, which consist of
two components, V QAA and V QAT , which are the aesthetic
and technical scores, respectively. The technical perspective
involves quantifying the perception of distortions, while the
aesthetic perspective focuses on preferences and recommen-
dations about content.

2. Text-Video Alignment
In addition to video quality assessment, measuring the align-
ment between input text and generated video is another im-
portant perspective for evaluating T2V generation. The tradi-
tional evaluation metric is CLIPSIM[26], and EvalCrafter[16]
further proposes more metrics to measure the text-video
alignment more comprehensively. These evaluation metrics
will be described below.

CLIPSIM[26] is calculated by first encoding the image
and text with the CLIP[18] model to get the embeddings and
then calculating the cosine similarity between the embed-
dings. The similarities between frames and the input text are
averaged to represent the final similarity between the video
and the input text. and then take the average value. The for-
mula is described in Eq. 3,

CLIPSIM(p, x) =
1

t

t∑
i=1

C (emb (xt) , emb (p)) (3)

where xi
t means the t−th frame of the video, emb(·)

means CLIP embedding, C(·) means calculating the cosine
similarity, and p means the text.

It is worth mentioning that the accuracy of CLIPSIM en-
tirely depends on the CLIP[18] model. To reduce the side ef-
fect, Relative Matching (RM)[26] metric. CLIPSIM calcu-
lates the ratio of CLIPSIM of the generated video to that of
the ground truth video. There are three other CLIPSIM-like
metrics. CLIPScore-ft is based on the CLIP model fine-tuned
on the MSR-VTT dataset[137]. BLIPScore and UMTScore
use BLIP[127] and UMT[133] instead of CLIP.

In practical scenarios, limited by the performance of the
CLIP model and the complexity of the prompt, the above tra-
ditional metrics can not work well. Therefore, a series of met-
rics are proposed in EvalCrafter.

SD-Score uses SDXL[174] to generate N1 images per
prompt, extracting the visual embeddings to calculate the
similarity between the generated video and the SDXL im-
ages. Essentially, SDXL[174] acts as the teacher, and the
video generation model as the student. The results generated
by the student are close to those generated by the teacher. The
calculation is shown in Eq. 4,

SSD =
1

M

M∑
i=1

(
1

N

N∑
t=1

(
1

N1

N1∑
k=1

C
(
emb

(
xi
t

)
, emb

(
dik
))))
(4)

where xi
t means the t−th frame of the i−th video. N1 is

typically set to 5.
BLIP-BLEU uses BLIP2[175] to generate the caption for

the generated video and the BLEU[176] similarity between
the caption and the prompt is calculated. Shown in Eq. 5,

SBB =
1

M

M∑
i=1

(
1

N2

N2∑
k=1

B
(
pi, lik

))
(5)

where B(·, ·) is the BLEU similarity scoring function,{
lik
}N2

k=1
are BLIP generated captions for i−th video, and N2

is typically set to 5.
OCR-Score checks whether the text required to appear in

the video appears in the generated video to test the model’s
ability to generate text. This process involves using Pad-
dleOCR to detect the English text in the generated video, after
that, calculate the word error rate (WER)[177], the normal-
ized edit distance (NED)[178], and the character error rate
(CER)[179]. The average of the three values is the OCR-
Score.

Detection-Score detects whether the requested objects
appear in the video,

SDet =
1

M1

M1∑
i=1

(
1

N

N∑
t=1

σi
t

)
(6)

where M1 represents the count of prompts containing ob-
jects, and σi

j represents the detection result for frame t in
video i (with a value of 1 indicating the detection of an object
and 0 indicating otherwise).
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Count-Score detects whether the number of objects in the
video is correct,

SCount =
1

M2

M2∑
i=1

(
1− 1

N

N∑
t=1

∣∣cit − ĉi
∣∣

ĉi

)
(7)

where M2 is the number of prompts with object counts,
cit is the detected object count frame t in video i and ĉi is the
ground truth object count for video i.

Color-Score detects whether the color in the video
matches the description in the prompt,

SColor =
1

M3

M3∑
i=1

(
1

N

N∑
t=1

sit

)
(8)

where M3 is the number of prompts with object colors,
sit is the color accuracy result for frame i in video t (1 if the
detected color matches the ground truth color, 0 otherwise).

Celebrity ID Score calculates the distance between the
celebrity in the generated video and the real image of the
celebrity,

SCIS =
1

M4

M4∑
i=1

(
1

N

N∑
t=1

(
min

k∈{1,...,N3}
D
(
xi
t, f

i
k

)))
(9)

where M4 is the number of prompts that contain
celebrities, D(·, ·) is the Deepface’s[180] distance function,{
f i
k

}N3

k=1
are collected celebrities images for prompt i, and

N3 is set to 3.

3. User Study
Although, in the previous sections, we have introduced many
automated evaluation metrics, some of these automated met-
rics have been found to be inconsistent with human judg-
ments in some studies[3, 181, 182], indicating that automated
evaluation metrics may not always be reliable. Therefore, the
human perspective is also essential for evaluating generated
videos.

There are four main benchmarks that are widely used by
the public: DrawBench[183], FETV[17], EvalCrafter[16] and
VBench[184].

DrawBench[183] is a benchmark for T2I generation, but
it can also be used for T2V generation. The benchmark is
proposed to compensate for COCO’s[185] limited range of
prompts, typified by the newly proposed PaintSkills[186], to
systematically assess visual reasoning skills and social bi-
ases outside of COCO[185]. DrawBench has eleven evalu-
ation categories with a total of 200 prompts. These categories
include color, count, spatial positioning, conflicting interac-
tion, long description, misspelling, rare words, quoted words,
and so on.

FETV[17] is a fine-grained evaluation benchmark for
T2V generation. It consists of 619 prompts, with 541 prompts

sourced from existing datasets and 78 unique prompts created
by the authors. Each prompt is categorized based on three as-
pects: the main content, attributes, and complexity. The fea-
ture referred to as “main content” was further divided into
spatial and temporal categories. Similarly, “attribute control”
encompasses both spatial and temporal qualities. The feature
of “prompt complexity” is categorized into three levels: “sim-
ple,” “medium,” and “complex,” which are determined by the
number of consecutive words in the prompts. By employing
classification, the FETV benchmark can be subdivided into
distinct subsets, enabling fine-grained evaluation.

EvalCrafter[16] aims to create a list of reliable prompts
to assess the capabilities of various T2V models fairly. To
achieve its goal, EvalCrafter collected and analyzed a large
number of prompts from the real world and selected more
than 500. Afterward, EvalCrafter proposes an automated
pipeline to increase the diversity of the selected prompts. In
total, there are 50 styles and 20 camera motion prompts in
the benchmark, and the average length of the prompts is 12.5
words, similar to real-world prompts.

VBench[184] is a comprehensive benchmark suite for
video generative models. It decomposes video generation
quality into 16 dimensions, and each evaluation dimension
assesses one aspect of video generation quality. To reduce the
overhead of generating videos, it accurately filters the set of
tested prompts; for each metric, there are only 100 prompts.
Experiments show that VBench’s evaluation results align well
with human perception.

Based on the benchmarks mentioned above, the re-
searchers put the results generated by their model and those
generated by others and asked the observer to choose the best-
generated video based on certain aspects. The commonly ex-
amined aspects are video frame quality, semantic relevance,
motion realism, etc.

In order to demonstrate the consistency of auto-
matic assessment results with human assessment results,
some studies[16, 17] calculate Spearman’s rank corre-
lation coefficients[187] and Kendall’s rank correlation
coefficients[188]. These coefficients reveal the direction and
strength between automatic and human assessment scores.

4. Motion Quality Assessment
Previous T2V studies did not yet consider metrics for evaluat-
ing the motion quality of the generated video. EvalCrafter[16]
propose Action-Score, Flow-Score, and Motion AC-Score for
motion quality assessment.

Action Recognition (Action-Score) recognizes human
actions in the generated video using the MMAction2
toolbox[189]. The action score is calculated as accuracy by
comparing the recognized action with the action in the origi-
nal prompt.

Average Flow (Flow-Score) uses the pre-trained optical
flow estimation method RAFT[190] to extract the dense flow
of the video in two-frame intervals. Then, calculate the aver-



15 Chinese Journal of Electronics, vol.04, no.04, pp.1-22, https://doi.org/123.123.123.123

C
hi

ne
se

 Jo
ur

na
l o

f E
le

ct
ro

ni
cs

age flow score for the whole video clip. This helps identify
static videos.

Amplitude Classification Score (Motion AC-Score).
Based on the average flow, Motion AC-Score calculates the
motion amplitude of the generated video and determines
whether the amplitude is the same as the amplitude specified
by the prompt. This gives us a clearer picture of the motion
changes in the video.

5. Temporal Consistency Assessment
Warping Error. Firstly, using a pre-trained optical flow esti-
mation network[190] to obtain the optical flow for every two
frames, after that, the difference between the warped image
and the predicted image is computed pixel by pixel, and the
final score is the average of all pairs.
Semantic Consistency (CLIP-Temp). Specifically, calcu-
lates the semantic embedding on every two frames of the
generated video, then obtains the average value of every two
frames.
Face Consistency. This metric evaluates the human identity
consistency of the generated video. It is calculated by se-
lecting the first frame as the reference frame and calculating
the cosine similarity between the embedding of the reference
frame and the embeddings of other frames. The average of
these similarities is taken as the final score.

VI. Experimental Results
Dataset. Currently, the T2V task is mainly evaluated in a
zero-shot manner on the MSR-VTT[137] and UCF-101[150]
datasets. MSR-VTT[137] consists of 10,000 video clips in 20
categories, each described by approximately 20 natural sen-
tences. Typically, the textual descriptions corresponding to
the 2,990 video clips in the test set were used as prompts to
generate the corresponding videos. The UCF-101[150] con-
sists of 13,320 video clips divided into 101 categories.
Evaluation Metrics. For the MSR-VTT[137] dataset, the
FVD[167] and FID[169] metrics are used to evaluate the
video quality, and CLIPSIM[26] is used to measure the align-
ment between text and video. For the UCF-101[150] dataset,
the Inception Score, FVD[167], and FID[169] are used to
evaluate the quality of the generated video and its frames.
Many of the metrics mentioned are not yet widely used and
are therefore not included in the statistics.
Comparison of Results. We summarize the experimental re-
sults of the most existing methods in Table 5. As illustrated,
PixelDance[191] achieves the best FID on UCF-101, and
VersVideo[42] achieves the best FVD and IS on UCF101. TF-
T2V[60], ART•V[54], and MoVideo[45] achieved the best
FID, FVD, and CLIPSIM on MSRVTT, respectively.

VII. Discussion

1. Challenges
Quantitative relationships in video. When a fixed number
of objects is specified in the prompt, it is sometimes in-

correctly reflected in the generated video. For example, the
prompt mentions that two people are present, but the gener-
ated video has only one person throughout, or it changes from
two people to some other number of people.
Causality of events. The model has difficulty understand-
ing how actions and behaviors will drive events. An example
would be coloring and painting a wall, but the wall color does
not change.
Object interactions. The model has trouble understanding
the boundaries between objects and modeling their interac-
tions. For example, after throwing a ball, the ball and the bas-
ket merge instead of being bounced off.
Scale and proportionality. The model experiences difficulty
understanding the relationship between scale size and pro-
portion of different objects in different parts of the scene. For
example, one person in the same scene is particularly short
while another is particularly tall.
Object illusion. The objects generated by the model are un-
stable, appearing or disappearing suddenly in the video.

2. Future Trends
Large-scale open-source T2V datasets. Although many
datasets have been proposed recently, the number is insuf-
ficient for the model to learn. Also, the quality of the videos
and texts in the datasets needs to be continuously improved
so that the model performance can be further enhanced. It is
also essential to open source collected datasets, which can ef-
fectively accelerate the progress of the research.
Efficient training methods and model architecture. Train-
ing a T2V model takes a lot of computational effort and time.
More efficient architectures reduce the time required for in-
ference and weaken the hardware requirements needed for
inference, which can significantly facilitate the application of
the model.
Comprehensive metrics for evaluation. While the recent
EvalCrafter[16] and FETV[17] have primarily filled the gap,
the newly proposed metrics will be included in the methods
comparison in the future.
Abstract text generation. Existing T2V generation methods
all assume the input text is concrete, which is not always
practical in the real world. For abstract words or abstract sen-
tences, it is difficult for the model to generate well, and the
quality of the generated video will drop significantly. For ex-
ample, the prompt is “Hard work is a virtue.” However, such
a demand is reasonable because people think abstractly, and
abstract ideas can be challenging to describe. We hope that
the results generated by the model can conform to our ab-
stract thinking or help our abstract thinking to become more
concrete.
Long video generation. Most of the research works men-
tioned in this survey can only generate short videos for 2 sec-
onds with 16 frames, which limits the application use. If long
videos with relatively high quality can be generated, T2V
generation will have excellent application prospects.
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Table 5 Organization of experimental results on video generation methods.

Method Venue Training
Dataset

Paired
Data Res. MSRVTT[137] UCF-101[150]

FID(↓) FVD(↓) CLIPSIM(↑) FID(↓) FVD(↓) IS(↑)
LVD[77] ICLR24 training

free
512×512 521 861

POS[50] Arxiv23 256×256 42.29 0.2993 566.68 38.19
VDM[6] NeurIPS22 UCF101[150] 64×64 298 57.62

NUWA[34] ECCV22 VATEX[143] 241K 256×256 47.68 0.2439
CogVideo[4] ICLR23

WebVid[122]

5.4M 480×480 23.59 1294 0.2631 179 701.59 25.27
LVDM[41] Arxiv22 2M 256×256 742 0.2381 641.8
SimDA[93] CVPR24 10M 256×256 456 0.2945

VideoGen[96] Arxiv23 10M 256×256 0.3127 554 71.61
ModelScope[88] Arxiv23 10M 256×256 11.09 550 0.293 410
Dysen-VDM[75] CVPR24 10M 256×256 12.64 0.3204 325.42 35.57
VideoDirGPT[76] 2023 10M 256×256 12.22 550 0.2860

PYoCo[97] ICCV23 22.5M 256×256 9.73 355.19 47.76
VideoFusion[48] CVPR23 10M 256×256 581 0.2795 75.77 639.9 17.49
Latent-shift[100] Arxiv23 10M 256×256 15.23 0.2773
Video-LDM[91] CVPR23 10M 256×256 0.2929 550.61 33.45

Show-1[43] Arxiv23 10M 320×576 13.08 538 0.3072 394.46 35.42
PixelDance[191] Arxiv23 10M 336×596 381 0.3125 49.36 242.82 42.1

HiGen[64] Arxiv23 30M 448×256 8.60 406 0.2947
VersVideo[42] ICLR24 10M 256×256 421 0.3014 119 81.3

MicroCinema[192] Arxiv23 10M 448×448 377.4 0.2967 342.86 37.46
VideoComposer[69] NeurIPS23 10M 256×256 580 0.2932

UniVG[193] Arxiv24 11M 1280×720 336 0.3014
TF-T2V[60] Arxiv23 20M 448×256 8.19 441 0.2991
ART•V[54] Arxiv23 5M 768×768 291.08 0.2859 315.69 50.34

MoVideo[45] Arxiv23 10M 256×256 12.71 0.3213 313.41 34.13
Make-A-Video[5] Arxiv22 WebVid[122]

HD-VILA[147]

20M 256×256 13.17 0.3049 367.23 33
MagicVideo[92] Arxiv22 20M 256×256 36.50 998 145 655
VideoFactory[15] Arxiv24 256×256 0.3005 410

InternVid[10] Arxiv23
WebVid[122]
InternVid[10] 28M 256×256 0.2951 60.25 616.51 21.04

VidRD[51] Arxiv23
WebVid[122]
Kinetics[158]
VideoLT[194]

5.3M 256×256 363.19 39.37

LaVie[44] Arxiv23
WebVid[122]

Vimeo[44] 35M 320×512 0.2949 526.3

Imagen Video[89] Arxiv23 14M 1280×768
FusionFrames[195] Arxiv23 256×256 0.2976 433.05 24.33

W.A.L.T[58] Arxiv23 89M 128 × 224 258.1 35.1

VIII. Conclusion

In this article, we present a thorough survey of text-to-video
generation techniques and systematically categorize meth-
ods into 1) VAE-based approach, 2) GAN-based approach,
3) Auto-regressive transformer based approach, 4) Diffusion-
based approach, 5) Diffusion model-based approach, and
6) T2I for video generation approach. This survey compre-
hensively reviews nearly ninety representative T2V genera-
tion approaches and includes the latest method published in
March 2024. In addition, we introduce 40 video datasets, 20
evaluation metrics, and available open source T2V models,
making it easy for the reader who would like to work on T2V
generation research. Furthermore, we report comparative per-
formance evaluations. In the end, we discuss challenges and
future trends that move the field forward.
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FM band (approximately 88–108 MHz in Aus-
tralia), constituting a primary source of RFI at
the MRO. Likewise, the frequency range for
SKA low is 50–350 MHz, also encompassing the
FM band. With a frequency range of approxi-
mately 70–300 MHz, the MWA spans a number
of Earth and space-based broadcast bands. With a

frequency range of approximately 70–300 MHz, the MWA spans a number
of Earth and space-based broadcast bands, including the ubiquitous FM band
(approximately 88–108 MHz in Australia), constituting a primary source of
RFI at the MRO. Likewise, the frequency range for SKA low is 50–350
MHz, also encompassing the FM band. With a frequency range of approx-
imately 70–300 MHz, the MWA spans a number of Earth and space-based
broadcast bands. (Email: xxxxxxxx@xxx.xxx.xx)
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